

nesus.eu

Network for Sustainable Ultrascale Computing COST Action IC1305

Russian Supercomputing Days Moscow, 26-27 September 2016

> Prof. Jesus Carretero Nesus Action Chair University Carlos III of Madrid Spain

arcos.inf.uc3m.es

University Carlos III of Madrid-ARCOS
NESUS: Network for sustainable ultrascale computing

Ultrascale storage I/O stack

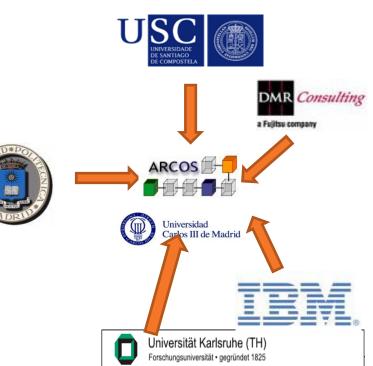
University Carlos III of Madrid

Created in 1989.

- 25,000 students
- Centers:
 - Social Sciences and Law School
 - Humanities and Journalism School

- Engineering School.
 - Computer Science & Engineering Department
 - Research group: Computer Architecture and Systems (ARCOS)

Leganés


Madrid, Spain

ARCOS Research Group

- Created in 1999.
 - Leader: Jesus Carretero
- □ Staff:
 - 2 Professors
 - 4 associate professors
 - 3 assistant professors
 - 5 researchers
 - 12 PhD Students.

Goals:

- Applied research on large-scale parallel and distributed systems (parallelization, runtimes and I/O).
- Contacts:
 - Argonne Labs, Northwestern, CINVESTAV, DKRZ, INRIA, CNRI, CIBERSAM, IBM Research, …

NESUS: Network for sustainable ultrascale computing

□ Ultrascale storage I/O stack

Current scenario

More complex computing scenarios HPC, HTC, MTC, DIC, ..

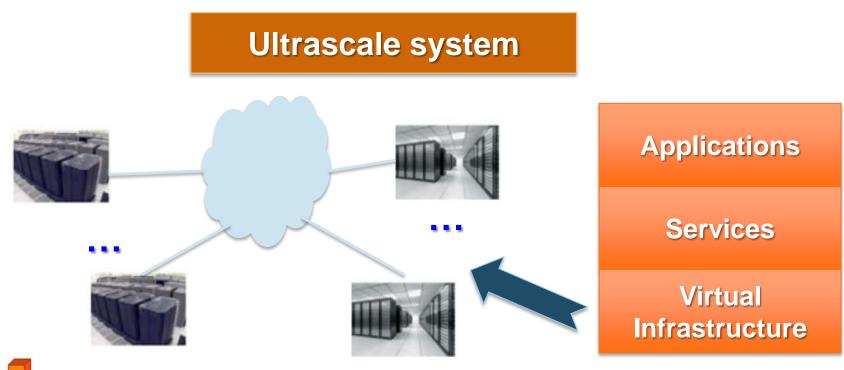
With different requirements

□ There are major research efforts towards:

- Exascale (PRACE, EESI, HP-SEE, IESP)
- Large scale virtual systems (XSEDE, FutureGrid, Grid5000).
- Big data solutions (BIG, EIOW, BDEC)

Efforts are mostly separated

But convergence is needed, and required by users.



Ultrascale systems

□ Ultrascale computing systems (UCS)

Big-scale complex system integrating parallel and distributed computing systems, that cooperate to provide solutions to the users at unprecedented scale.

Jesus Carretero - Russian Supercomputing Days 2016

Promote sustainability

As the scale and complexity increase in UCS, sustainability is becoming a major challenge

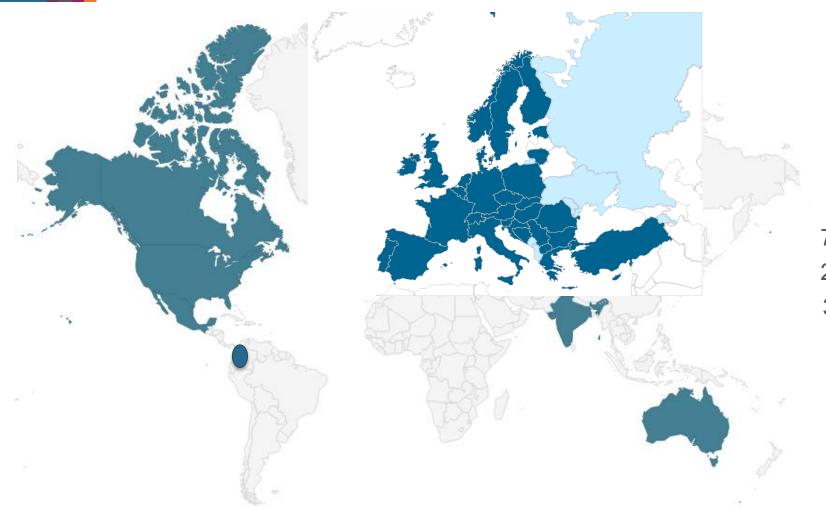
- Sustainability not only means energy, but all factors that will allow the system to be adopted and maintained.
- Sustainability in UCS should be the result of leveraging several cross-layer aspects to face complexity:
 - Programmability, Data management, Resilience, Energy efficiency, Scalability, …

Scientific goals

Exploring new solutions for the system software stack (programming paradigms, runtimes, middlewares, resilience, data management, and energy models) and their application to enhance sustainability in UCS.

- > Understanding trade-offs and synergies to leverage all factors.
- > Considering new hardware and architectural solutions.
- Exploring redesign and reprogramming efforts for applications to efficiently exploit ultrascale platforms, while providing sustainability.
- Holistic approach to manage the whole ecosystem,
 - Important to understand how all the factors affect UCS sustainability -> sustainability metrics

Workplan


NESUS Activities

- Working Group meetings
- Research stays -> 15 grants per first year
- Action workshop (2015 in Krakow, 2016 in Sofia).
- Winter school & PhD Symposium (2016 in Timisoara, 2017 Calabria)
- Strong emphasis in cooperation: open to external actors
 - ✤ Join publications, tools, applications, …
 - With industry to solve real-world cases
 - With other institutions/projects to advance in scientific goals

Consortium

45 countries 76 institutions 240 members 35% young researchers

> Open to new members Open to cooperation

□ Ultrascale storage I/O stack

Applications I/O requirements

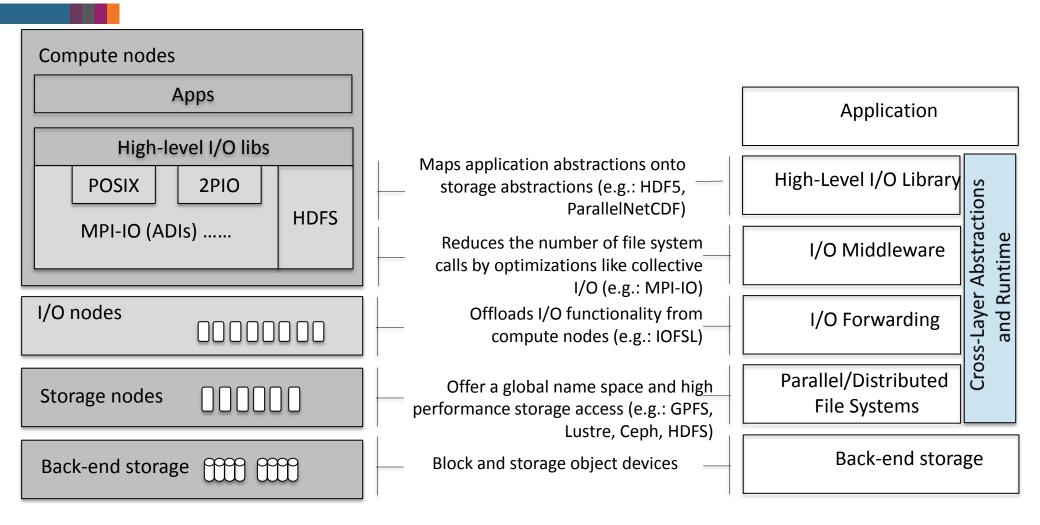
□ Applications generate 10s of Tbytes of data per execution.

Project	On-line Data (TBytes)	Off-line Data (TBytes)
Laser-Plasma Interactions	60	60
Type la Supernovae	75	300
Lattice Quantum Chromodynamics	300	70
Engineering Design of Fluid Systems	3	200
Multi-material Mixing	215	100
Earthquake Wave Propagation	1000	1000
Fusion Reactor Design	50	100

□ Keeping hundreds of Tbytes of data online is increasingly common.

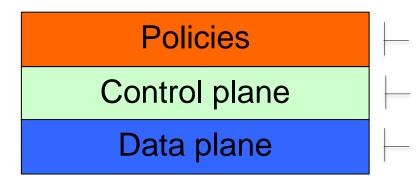
Current problems of I/O stack

- As applications grow
 - Large scale data sets and conflicting data distribution models
- □ As the depth of the storage hierarchy increases
 - Programmability, performance, and data management are big concerns.
- □ I/O system optimizations applied independently at each system layer
 - Can cause mismatches between different layers
- Lack of mechanisms for adapting to unexpected conditions
 - Cross-layer adaptive control mechanisms not available for UCS I/O stack.
 - I/O interfaces are rigid and cannot be extended with new services over the data.
- Lack of capability of exposing and exploiting data locality
 - Dynamic deployment of I/O system not easy
- FS scalability is limited
 - Mostly due to metadata (~ 65% ops)


First step: coordinating functionality at I/O stack levels

- Vertical coordination ->
 - Mapping application models on storage models
 - Coordinate multiple level buffering/caching for latency hiding
 - Controlling vertical data flow: CN <-> ION<-> FS <-> SN
- Horizontal coordination ->
 - Transparent access to distributed (unstructured) data
 - Collective I/O on compute nodes
 - (In-memory) data aggregation on the I/O nodes
 - Transparent replication of data

Proposal: CLARISSE



CLARISSE Architecture

Cross-layer abstractions at run-time

- Facilitate the flow of control and data across the I/O stack
- Decouple the data and control planes
 - Data plane
 - Control plane
 - Policies plane

Elastic collective I/O, parallel **I/O scheduling,** resilience, load balancing, etc.

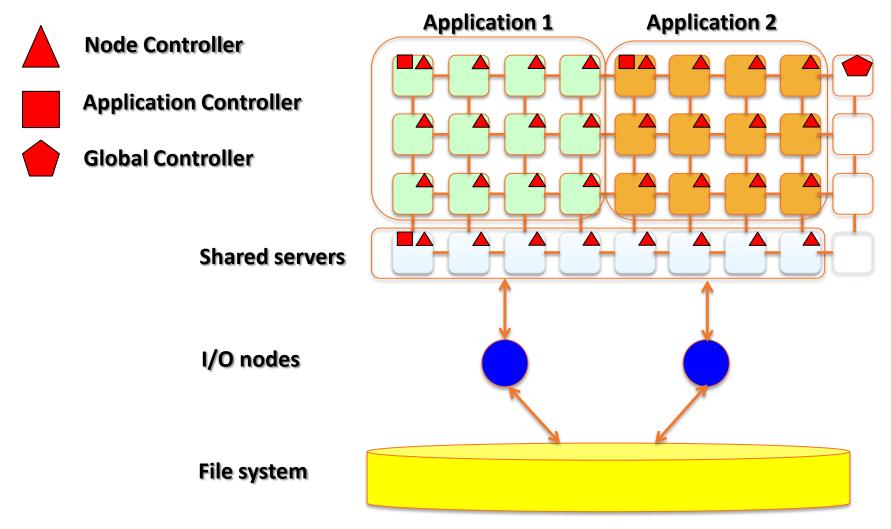
Publish/Subscribe API

Collective I/O, Independent I/O (MPI-IO, put/get APIs)

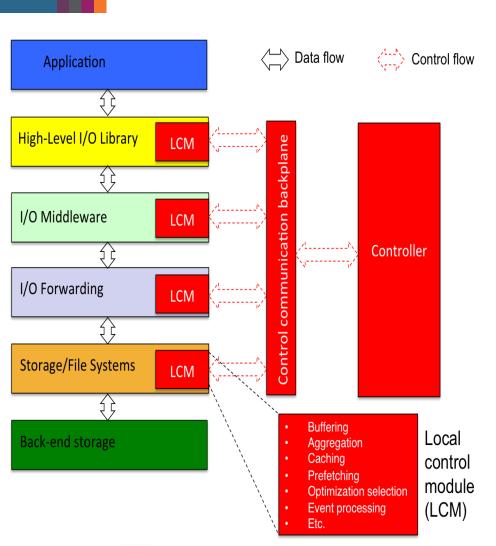
CLARISSE control plane

Control backplane

- Based on a publish/subscribe substrate (e.g. Beacon)
- Processes can subscribe to events having certain properties
 - Associate call-back
 - Wait for an event
 - Check for the arrival of an event


Allows building any distributed/replicated control architecture

All nodes participate in control


Example: hierarchical control infrastructure

Data plane

Design novel abstractions and mechanisms for supporting data flow optimizations

- Data aggregation (e.g., collective I/O)
- buffering / caching, data staging, in-memory
- Ioad balance
- data locality (e.g. in-situ and in-transit data processing)
- Parallel data-flows based on the these abstractions

Data management components

□ View-based I/O (VBIO)

File views I/O optimization for high performance collective file access

Hercules

- Dynamic deployment of in-memory object-stores per node
- Guided by the scheduler
- Put/Get API (Key-value)

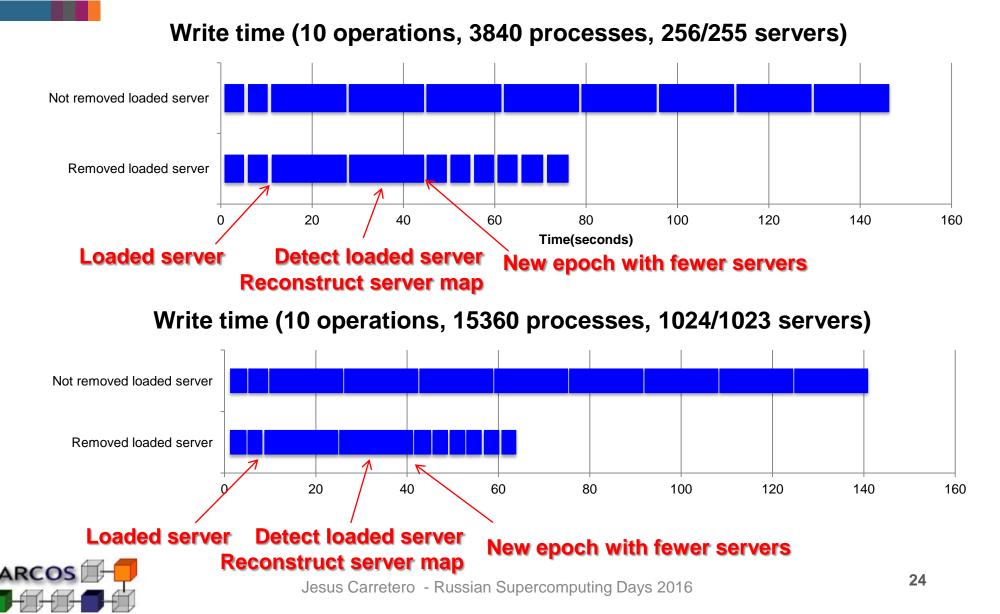
□ FlexMPI

Elastic deployment of processes and I/O servers

Compute nodes						
Apps						
High-level I/O libs Hercules						
VBIO 2PIO	(MPI					
MPI-IO (ADIs) CLARISSE Hercules	CoMPI/FLEXMP					
I/O nodes CLARISSE Hercules	C					
Storage nodes						
Back-end storage						

CLARISSE policies plane

Decitions taken based on control and data info.


- Data distribution and load balancing,
 - Data-location aware scheduling
- Resilience,
 - Automatic replication
- Elastic collective I/O,
 - Enhance large collective I/O operations
- Parallel I/O scheduling,
 - Enhances scheduling of multiple parallel I/O operations

❖....

Elastic collective I/O scheduling evaluation

NESUS Web portal (nesus.eu)

	•						У	f 🖬	
	NESU Network for Sustai	able Ultrascale Compu							
Home	Publications -	Blog Events	Announcement	s Activities -	Members -	Working Groups -	Jobs		
Action IC1305									
About NESUS			0100000	The Future Of U September 5, 2014	Jitrascale Co	omputing Under S	Study		
About COST Action IC1305 M	MoU			, , ,	ts from more than 40	countries are researching what	the next ge	neration of	f
New Membersh	nip Request					dy is being carried out under th of this type coordinated by Uni			
Intranet				Madrid (UC3M). Ultrascale	systems combine th	e advantages of distributed a which many tasks are execut	nd parallel	computing	1
Application Cat	ů.			coordinat	type or computing in	which many lasks are execu	teu at the :	same ume	
New Job Propo		Read more							Ê
ere are no upcon	ning events.								
Add g+ Add	View Calendar >								
		Network for Sustain	nable Ultrascale Com	puting (NESUS)					

Ultrascale systems are envisioned as large-scale complex systems joining parallel and distributed computing systems that will be two to three orders of magnitude larger that today's systems. The EU is already funding large scale computing systems research, but it is not coordinated across researchers, leading to duplications and inefficiencies. The goal of the NESUS Action is to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management. The network will contribute to glue disparate researchers working across different areas and provide a meeting ground for

Jesus Carretero - Russian Supercomputing Days 2016

ACM/IEEE CCGrid 2017 Madrid, Spain, May 14-17, 2017

See you in Madrid!

Thank you!

arcos.inf.uc3m.es