
MPI application tuning based on trace replay

E. Leksikov, A. Timonova, D. Durnov

Intel Corporation

Abstract - In this paper we present a new approach to MPI runtime library tuning based on an

application communication profile. The approach allows the user to get a dramatic reduction in

tuning time. The tuning approach based on a communication profile uses the same methodology

as the application specific tuning, which uses a real application run on each tuning iteration.

However, instead of the application we use only the “replay” of its communication pattern,

which doesn’t include computation, IO and other application-level time consuming parts. We

describe some implementation details, results of our experiments, challenges and issues we

have faced and the way they may be addressed in the future.

Index terms – MPI, autotuning, optimization, HPC.

Summary

MPI implementations have many optimization parameters that are intended to ensure optimal

cooperation of a parallel system with the hardware. Such cooperation can be achieved by adjusting

defaults for those parameters. Due to the fact that there are many optimization parameters and their tuning

requires a lot of time, special tools were developed to automate the process. However, the existing tools

spend a lot of time and resources searching for the “optimal” values. This article proposes a new approach

to the problem of finding optimal environment settings. The new approach is meant to reduce the

considerable tuning costs without significant loss of quality, which exist now.

Problem/Opportunity

Let us consider a few of the existing systems for application environment configuration. The Intel®

MPI Library’s[1] mpitune utility[2] supports several operation modes, but in this paper, we will consider

only two of them: “Application Specific” and “Fast Application Specific”.

The first mode (“Application Specific”) is aimed at finding the optimal configuration of Intel® MPI

Library for a specific application. This tuning mode uses the actual application and provides the most

precise values, but the method is too expensive in terms of cluster time.

“Fast Application Tuning” runs Intel® MPI Benchmarks[3] instead of running real applications and

focuses on those cases which are not covered by the out of the box settings for optimal performance of the

application. For example, if an application uses non-typical message sizes.

Multiple experiments have shown that the existing tools handle the task very slowly or with fairly low

quality. This means that the main drawback of the existing environment configuration systems is the

enormous amount of time spent on the job to find the most optimal settings.

Solution

Since cluster time is an extremely expensive resource, it is proposed to perform tuning using an

application that reproduces the communication pattern of the original application. Such an application

doesn’t execute the user code, which will significantly reduce the tuning time.

Figure 1 shows the structure of the tuning workflow based on the new methodology. According to the

new methodology “to create what will be then re-played”, it is necessary to create a trace of the original

application. Among all the strategies of research, tracing was selected as an instrument allowing us to

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

804

retain the most complete picture of the analyzed application. Once the trace is ready, we can re-play it and

get the desired “tuned” settings.

Adding heuristics for selecting small repeating patterns (independent parallel tasks or blocks) will

reduce the trace replay execution time. For example, by reducing the number of iterations in loops or by

executing only one instance of identical parallel subtasks.

Additionally, the trace replay technology can be used to create a benchmark that measures MPI

performance taking into account communication pattern of the real application.

Fig. 1. MPI tuning workflow based on the “replay” of pattern

Measurement results

Currently there is a prototype system that can handle some MPI calls. Figure 2 shows the trace of the

original application (top graph) and the trace of replay work (bottom graph). The original application

contains the MPI_Send and MPI_Recv operations, which are invoked between two processes.

Collect MPI
trace

Apply
heuristics

(optionally)

Replay the
pattern with
enumeration

of settings

Save the best
settings to
use them
regularly

Fig. 2. Original application (top) and trace replay’s work (bottom)

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

805

Point-to-point operations create one of the simplest communication patterns. The traces show that all

of four MPI calls were retained. Besides, you may notice that some sections with MPI calls were placed

very close one another. This happened because the user code did not execute.

The experiments have shown that tuning using the new methodology takes less time compared to the

application specific tuning and simple enumeration of all parameters.

For testing purposes, a “handmade” micro benchmark was taken, which makes use of popular MPI

operations. User’s part of code was emulated using the sleep() function, which pauses program execution

for the specified time.

Figure 3 compares different tuning methodologies based on two criteria: speedup of the original

application (dark bars) and tuning time (light bars):

1. Search of optimal settings for the original application using linear search of each parameter

independently, the original application was used;

2. Search of optimal settings using the same methodology as above but the trace replay was used;

3. Search of optimal settings using complete enumeration of parameter combinations, the trace

replay was used;

4. Search of optimal settings using the same methodology as in the 2
nd

 approach but only for two

functions – MPI_Bcast and MPI_Allgather.

The data shows that the use of the new methodology significantly reduces time for finding the optimal

settings for the application. Besides, the results of tuning using the new approach are comparable quality-

wise with the results based on the original application execution: the speedup ratio varies only by the third

number of the fractional part (1.195 vs 1.198).

Conclusions

Fig. 3. Comparison of autotuning methodologies

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

806

The existing tools for tuning MPI applications consume a lot of time, which is an inadmissible use of

resources for large problems. The new approach involves the use of an application trace replay instead of

the original application, which will allow us to reduce time of search for optimal settings without loss of

quality.

References

1. Intel® MPI Library for Linux* OS Developer Reference

https://software.intel.com/en-us/mpi-refman-lin-html

2. Tutorial: Using MPI Tuner for Intel® MPI Library

 https://software.intel.com/en-us/mpi-tuner-tutorial-lin

3. Intel® MPI Benchmarks User Guide and Methodology Description

https://software.intel.com/en-us/imb-user-guide

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

807

https://software.intel.com/en-us/mpi-refman-lin-html
https://software.intel.com/en-us/mpi-tuner-tutorial-lin
https://software.intel.com/en-us/imb-user-guide

