
Using simulation for performance analysis and visualization of

parallel Branch-and-Bound methods
 *

Y.G. Evtushenko
1
, I.V. Golubeva

1
, Y.V. Orlov

1
, M.A. Posypkin

1

Dorodnicyn Computing Centre, FRC CSC RAS
1

The Branch-and-Bound (B&B) is a fundamental algorithmic scheme for a large variety of

global optimization methods. For many problems B&B requires the amount of computing

resources far beyond the power of a single-CPU workstation thus making parallelization

almost inevitable. The approach proposed in this paper allows one to evaluate load balanc-

ing algorithms for parallel B&B with various numbers of processors, sizes of the search

tree, the characteristics of the supercomputer’s interconnect. The proposed approach was

implemented as a special tool that simulates the process of resolution of the optimization

problem by B&B method as a stochastic tree branching process. Data exchanges are mod-

eled using the concept of logical time. The user-friendly graphical interface can render

both real traces and ones produced by the simulator. It provides efficient visualization of

the CPU’s load, data exchanges and progress of the optimization process.

Keywords: performance analysis and simulation, parallel computing, global optimization,

branch-and-bound methods, load balancing.

1. Introduction

The Branch-and-Bound method (B&B) is one of the main approaches to the resolution of mathe-

matical programming problems [1,2]. In contrast to heuristic and stochastic methods, B&B ensures the

accuracy of the found solutions and, in some cases, can solve the problem exactly. For realistic prob-

lems B&B can consume computational and time resources, significantly exceeding the available ca-

pacity. Parallel computing can be used to speedup and reduce the memory requirements for B&B im-

plementation. Balancing computational load between processors plays an important role in the parallel

implementation of global optimization methods[3-5]. Typically load balancing means transmission of

jobs from one processor (core) to another along the computations.

Today most powerful supercomputers contain
610 computational cores and this number continues

to grow thus making load balancing a very challenging problem. There is a clear demand for deep and

systematic study and comparison of various load distribution strategies. Performing such evaluation on

a real multiprocessor computing system requires multiple runs on the very expensive equipment. We

propose to use the simulator for these purposes. The simulator allows one to study performance of

load balancing algorithms with various numbers of processors, sizes of the search tree, the characteris-

tics of the supercomputer’s interconnect. The process of resolution of the optimization problem by

B&B method is replaced by a stochastic branching process. Data exchange and computations are

modeled using the concept of logical time.

Another important problem is an adequate visualization of the algorithm performance. To address

this issue we developed a user friendly graphical interface that enables convenient performance analy-

sis through processor load charts communication tables and aggregate statistics. The developed tool

could serve as a good problem specific addition to other performance analysis and supercomputer’s

monitoring software [6-8].

*
 Supported by Ministry of Science and Education of Republic of Kazakhstan, project 0115PK00554, Russian

Fund for Basic Research, project16-07-00458 А, Leading Scientific Schools project NSH-8860.2016.1, Project

I.33 of RAS

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

41

2. Distributed memory Branch-and-Bound implementation

The goal of global optimization (GO) is to find an extreme (minimal or maximal) value

)(** xff  of an objective function)(xf on a feasible domain
nRX  . The value

*f and feasible

point Xx *
 are called optimum and optimal solution respectively. Without loss of generality one

can consider only minimization problems: Xxxf min,)(.

The Branch-and-Bound (B&B) is a general name for methods to split an initial problem into

subproblems which are sooner or later eliminated by bounding rules. Bounding rules determine

whether a subproblem can yield a solution better than the best solution found so far. The latter is

called the incumbent solution. Bounding is often done by comparing lower and upper bounds: a

subproblem can be pruned if the lower bound for its objective is larger or equal to the current upper

bound, i.e. incumbent solution.

 Numerous Branch-and-Bound algorithms were developed for different global optimization prob-

lems. Some of them were very successful for particular problem kinds, e.g. Travelling Salesman or

Knapsack problems. However for many problems Branch-and-Bound methods require the amount of

computing resources beyond the power of a single-CPU workstation. Fortunately Branch-and-Bound

is highly suitable for parallel and distributed computing: after splitting the parts of the solution space

can be processed independently and simultaneously.

Another great advantage of B&B methods is that the general scheme does not significantly vary

from one problem to another. The splitting and bounding rules may differ while keeping the general

scheme almost intact. The direct consequence of this is the possibility to separate problem-

independent and problem-specific parts. Such separation saves a lot of efforts when implementing a

new problem or a new method. This is especially true for tools targeted at parallel and distributed en-

vironments because the “parallel” part is reused for different optimization problems. We follow this

approach in our tools: the computing space management, the work-distribution and communication

among application processes is problem-independent.

Our parallel library for global optimization BnB-Solver [9] is built on top of MPI [10] which im-

plies that parallel processes communicate via message-passing. Each process do three basic kinds of

activity: performing steps of B&B method, sending data and receiving data. Transmitted data consists

of sub-problems and/or incumbent solutions and commands. Exchanging sub-problems performs

computations redistribution among processes in order to make the load more or less even. Sending

incumbents ensures fast error propagation among parallel processes.

According to the aforementioned concepts managing the resolution process including data ex-

changes can be encapsulated in a special component called the scheduler. The problem-specific part is

managed by another component – the solver that provides methods to solve the problem, read its state

(the number of subproblems in a queue) fetch and extract subproblems. Sending and receiving of

subproblems is implemented by the communicator component. These parts are composed together by

a special bridge class that invokes respective methods of the scheduler, the solver or communicator

(Figure 1). The proposed approach separates the managing part from implementation details part

thereby providing an opportunity for an independent schedulers testing and verification.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

42

Fig 1. Class diagram of fundamental interactions

The scheduler is a finite state machine that accepts events and issues actions. Possible events and

actions are listed in Tables 1, 2 respectively. The bridge invokes method action() of the scheduler

class that accepts an event and the solver state as input parameters and generates an action on output.

Then the bridge invokes the methods associated with the action of the solver or communicator.

Table 1. Event types

Event type Arguments Description

ERROR Error code An error occurred.

START The beginning of computations.

DONE The real number of steps done The requested number of steps

done.

SENT The number of transmitted

items

The requested sending message

action done.

DATA_ARRIVED The process that sent the data The receive command finished

and the requested data received.

COMMAND_ARRIVED The process that sent the data The command arrived.

Table 2. Action types

Action type Arguments Description

SOLVE Number of steps Perform given number of

B&B steps.

EXIT Terminate the process.

SEND_COMMAND The receiver process number,

command number and argu-

ments

Send the given command to

the specified process.

SEND_SUBS_AND_RECORDS The receiver process number,

number of subproblems to

transmit.

Send the specified number of

commands and the incumbent

solution to the specified pro-

cess.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

43

RECV The id of process the data is

waited from.

Issues the receive command

and waits for the message.

The scheduler can trace all transitions from one state to another, actions, events and their argu-

ments. If logging is enabled the traces of all processes are collected, merged and written to file system.

Then these traces can be processed and visualized by GUI described below.

3. Simulation of parallel B&B

The simulator was designed for convenient fast and efficient performance testing of parallel

schedulers. The simulator uses the real scheduler which is taken intact from the library and provides

‘fake’ implementations of the solver and the communicator. This approach enables the rapid testing of

the schedulers on large trees and thousands of processors because the time consuming resolution steps

and communications are substituted by formal actions which take nearly zero time.

The parallel processing is simulated serially. For each simulated process the instance of the

scheduler is created. The simulator cyclically iterates through these instances and invokes action()

methods. If the action is SOLVE then the specified number of steps is simulated and the logical clock

is increased according to the modelled time. The B&B method is substituted by a random branching

process where the node generates two new nodes with a probability decreasing with distance between

the tree root and the node. When the node reaches the maximal tree depth the probability becomes ze-

ro. Thus the maximal tree depth controls the size of the whole tree. The time of solving is modelled

using the simple formula
stnt  where n is the number of performed steps and

st is the time of one

step.

The data transmission is simulated using the concept of logical clock [11]. When the

SEND_SUBS_AND_RECORDS command is issued the communicator object stores the message and

its timestamp obtained by increasing the current time on a process by the modelled time of a message

transmission. The time required to transmit the message is computed by the following formula:

BSLtSt p / ,

where S is the size of the message, pt is time needed for packing a unit of data at a sender process, L

is the network latency, defined as the time needed to transfer the minimal amount of data throughout

network and B is the bandwidth – the amount of data transmitted through the network in a unit of

time.

When the RECV command is issued by a scheduler the recipient process the communicator looks

up for available messages for this process and if one is encountered it compares the logical time on a

recipient Rt with the message time stamp
St . The logical time on a recipient is adjusted to the maxi-

mum of these values and the obtained value is increased by time required to unpack the message:

uSRR tSttt ),max(,

where S is the size of the message, ut is time needed for unpacking a unit of data on the recipient.

During the simulation all events and actions are logged. The log files contain all information

about logical time of various simulated events. This information is used by graphical user front-end

described in the next section.

4. Graphical front-end

The log files are not suitable for direct analysis by a human. The graphical front-end is aimed at

user-friendly graphical visualization and performance analysis of traces produced by either simulator

or the real solver. Based on the collected traces the GUI performs the following activities:

– visualizes processors’ loads;

– visualizes data exchange among processors;

– computes aggregated performance information such as speedup and efficiency.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

44

Figure 2 shows the window demonstrating processor load plots for individual processors. At the

bottom of the window there is a slider similar to one used in multimedia players. It allows an easy and

natural navigation throughout the trace. Such representation is convenient for a moderate number of

processors. However for hundreds and thousands of processors it can be very inefficient. For such cas-

es BNB-Visualizer provides the processor grid (Figure 3) which scales well. Blue color is used for

depicting computations, red color marks processors blocked in the receiving state. Green color means

the processor is sending data.

Fig 2. Processors’ load plots

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

45

Fig 3. Processors’ grid

Communications are visualized using two-dimensional chart where processors are aligned along

horizontal (senders) and vertical (receivers) axes. The receive actions are visualized by a horizontal

blue line and the send action is represented by a vertical green line (Fig. 4). At the Figure lines (1) and

(2) correspond to a successful message transmission from the process 9 to the process 0. Line (3) de-

picts the unsatisfied send issued by the process 0.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

46

Fig 4. Communications visualization

The cumulative information about the processors’ usage and performance metrics is shown in a

separate tab (Figure 5). This performance chart shows the number of processors occupied at the given

moment of time (blue color) and the number of free processors (green color).

5. Experiments

5.1 Case study I: selecting best parameters for adaptive load balancing

The simulator was used to study the comparative performances of a family of load balancing algo-

rithms working as follows. At the initial phase the 1
st
 (master) processor generates some number of

sub-problems. At the second stage each of remaining processors (slaves) gets a sub-problem from the

master and starts its resolution. The solution process on a slave is interrupted each T iterations and

then the slave sends S sub-problems or less to the master. If there are remaining sub-problems on a

slave it resumes B&B method. The master processor stops receiving sub-problems from slaves when

the number of sub-problems in its pool exceeds M and resumes receiving when it drops below m. This

is done by setting parameter S to 0 or to its original value.

Figure 5 shows the performance chart for small values of T. The very intensive data exchange

among parallel processes doesn’t yield good performance because of large communication expenses.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

47

Fig 5. The performance for small values of T

For moderate values of T the performance is better but we can see significant performance losses

at the final stage of the algorithm (Fig. 6). In the middle of the computational process the load balance

is good but at the terminal stage it is quite bad.

Fig. 6. The performance for moderate values of T

The natural solution to avoid such performance losses is to introduce dynamic adaptation: when

the number of subproblems on the master drops below the number of free processors the parameter T

is decreased in 10 times. Thus at the middle of computations when the deman for load redistribution is

small T is kept relatively large. At the final stage T dicreases in order to provide good load balancing

among process throught intesive excahnge of subproblems. This leads to a better performance (Fig. 7).

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

48

Fig. 7. The performance for dynamic adaptation of T

5.2 Case study II: studying performance of parallel frontal algorithm

In the second case study we simulated the simplest possible load balancing scheme – frontal

branching. In this approach the master performs T B&B steps thereby producing a number of sub-

problems. Then each sub-problem is sent to the respective slave and is solved completely. The results

are collected and the best found solution is selected and supplied to the user. The number of available

cores is supposed to be larger than the number of subproblems generated by the master.

Theoretical studies [12,13] for a particular case of B&B method suggest that the speedup of

frontal branching is a unimodal function of the threshold valueT . We used simulator to check whether

this is the general behavior and assess the influence of the network latency. The simulator was run in

batch mode on random trees with maximal depth varied from 30 to 50 and with different values of T
from 100 to 1000. The results showed that though the behavior is not necessary strictly unimodal the

trend is obvious: there is a value of T where the speedup reaches its maximum and then starts to de-

crease.

Figure 8 shows the plot of the speedup as a function of T for a random tree of depth 40. Two

graphs show the speedup as a function of T for zero latency (red) and non-zero latency (blue). We

observe quasi-unimodal behavior for both cases. As expected the speedup for non-zero latency is less

than for zero latency case.

8. Conclusions

The paper discussed the simulator of parallel Branch-and-Bound method that can be used for a

deep study and comparison of load balancing algorithms. Though the simulation can’t completely re-

place the testing on a real multiprocessor it can significantly reduce the number of expensive runs on a

supercomputer. Since the traces produced by the simulator follow the same format as the parallel solv-

er the graphical front-end supports performance visualization for both the simulator and the optimiza-

tion library. The simulator can run in batch mode to perform large-scale simulation for comprehensive

performance analysis, e.g. produce scalability charts [14].

In the future we are going to implement more sophisticated hierarchical interconnect models in

our tool and perform a comprehensive analysis and comparison of various load balancing algorithms.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

49

Fig. 8. The speedup as a function of T

References

1. Pardalos P.M., Romeijn E., Tuy H. Recent developments and trends in global optimization //

Journal of Computational and Applied Mathematics. 2000. Vol. 124. No. 1-2. P. 209–228.

2. Scholz D. Deterministic global optimization: geometric branch-and-bound methods and their ap-

plications. Springer Science & Business Media, 2011. 153 p.

3. Gendron B., Crainic T.G., Parallel Branch-and-Bound Algorithms: Survey and Synthesis // Opera-

tions Research. 1994. Vol. 42. No. 6. P. 1042–1066.

4. Lüling R., Monien B., Load balancing for distributed branch & bound algorithms// Proceedings of

Sixth International Parallel Processing Symposium. IEEE, 1992. P. 543–548.

5. Barkalov K., Gergel V., Lebedev I. Use of Xeon Phi Coprocessor for Solving Global Optimization

Problems // Proceedings of Parallel Computing Technologies. Springer International Publishing,

2015. P. 307–318.

6. Ganglia Monitoring System. URL: http://ganglia.sourceforge.net/ (accessed 12.06.2016)

7. Nagios-the industry standard in IT infrastructure monitoring. URL: https://www.nagios.org (ac-

cessed 12.06.2016)

8. Stefanov, K., Voevodin, V., Zhumatiy, S., Voevodin, V. Dynamically Reconfigurable Distributed

Modular Monitoring System for Supercomputers (DiMMon) //Procedia Computer Science. 2015.

Vol. 66. P. 625–634.

9. Evtushenko Y., Posypkin M., Sigal I. A framework for parallel large-scale global optimization

//Computer Science-Research and Development. 2009. Vol. 23, No. 3–4. P. 211–215.

10. Snir M., Otto S. W., Huss-Lederman S., Walker D. W., Dongarra J. MPI, The Complete Refer-

ence. Scientific and Engineering Computation. MIT Press, 1996. 140 p.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

50

http://ganglia.sourceforge.net/
https://www.nagios.org/

11. Lamport L. Time, clocks, and the ordering of events in a distributed system //Communications of

the ACM. 1978. Vol. 21, No 7. P. 558–565.

12. Kolpakov R. M., Posypkin M. A. Estimating the computational complexity of one variant of paral-

lel realization of the branch-and-bound method for the knapsack problem //Journal of Computer

and Systems Sciences International. 2011. Vol. 50, No. 5. P. 756-765.

13. Posypkin M. A., Sigal I. K. Speedup estimates for some variants of the parallel implementations

of the branch-and-bound method //Computational Mathematics and Mathematical Physics. 2006.

Vol. 46, No. 12. P. 2187-2202.

14. Voevodin V., Antonov A., Dongarra J. AlgoWiki: an Open Encyclopedia of Parallel Algorithmic

Features //Supercomputing frontiers and innovations. 2015. Vol. 2, No. 1. P. 4-18.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

51

