
Speeding up numerical calculations in Python
*

A.A. Fedotov, V.N. Litvinov, A.F. Melik-Adamyan

Intel Corporation

This article describes the tools, techniques and optimizations that Intel brings to the Python
*

developers community. Intel develops high performance libraries and profilers as well as

extends support for multi-core and SIMD parallelism across Python toolchain so that de-

velopers can achieve near native performance in Python, avoiding the need to rewrite in

C/C++. This article will demonstrate tools and libraries applied to manage popular real

world problem.

Keywords: python, numerical calculations, performance.

1. Introduction

In this article we will describe the tools, techniques and optimizations that Intel brings to the Py-

thon* developers community. We are developing high performance libraries and profilers as well as

extending support for multi-core and SIMD parallelism across Python toolchain so that developers can

achieve near native performance in Python, avoiding the need to rewrite in C/C++. This will be illus-

trated on a popular real world problem.

2. Problem statement

2.1 Popularity of Python language

Studies by several companies show that Python is among the most demanded languages.

Codeval.com studies from year of 2016 demonstrate that Python is the number one programming lan-

guage in hiring demand followed by Java
*
 and C++ (see Fig. 1) [1]. In addition, Python language of-

fers great productivity to developers due to its expressiveness and ease of coding (see Fig. 2). [2, 3]

Python use continues to grow in many domains that require interactive prototyping. Quants de-

velop trading algorithms, data scientists build analytics models, and researchers prototype numerical

simulations.

Fig. 1. Most popular coding languages as of February 2, 2016 by www.codeeval.com

*
 Other names and brands may be claimed as the property of others.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

26

http://www.codeeval.com/

Fig. 2. Programming languages productivity. [2, 3]

2.2. Python performance problems

All too often, scaling the prototype code to production means a developer recoding the algorithm

in a language such as C++ or Java. This is primarily done due to Python’s performance issues and

scalability problems (one cannot write effective parallel Python code because of infamous GIL –

Global Interpreter Lock). Rewriting takes time, reduces flexibility, and can lead to errors.

Lots of performance problems are caused by Python interpreter’s implementation being unfriend-

ly to modern hardware – as interpreter needs to run on all sorts of hardware platforms it cannot effec-

tively use new CPU features like Intel® Streaming SIMD Extensions (Intel® SSE) or Intel® Ad-

vanced Vector Extensions (Intel® AVX).

In addition, Python implementation was not made with cache-locality in mind: consecutive data is

not stored in a sequential way; data access requires a lot of pointer dereferencing, etc. All this signifi-

cantly impedes Python interpreter achieving good performance on modern hardware platforms.

3. Known Solutions for Python problems

Performance problems mentioned in previous section are usually addressed by using C extensions

like NumPy, SciPy, Scikit-learn*. Such libraries help fully utilize hardware at the same time allowing

Python developer to express his/her thoughts in a clear, concise way.

However, standard implementations of such libraries are too generic and do not utilize hardware

capabilities to the maximum, and typically do not do vectorizing and usually are single-threaded while

modern hardware is usually multi-core or even multi-socket machine [4]. Considering this, it is devel-

oper’s responsibility to ensure that his/her application utilizes all CPU resources while it is better to be

done by the library since algorithm parallelization is not a simple task and requires a lot of expertise in

parallel programming, which typical Python developer does not have and does not even need to have.

Also note that it’s not a no-brainer task to replace all the performance-critical code with libraries

because the developer needs to know which part of his/her code actually is performance-critical. To

understand that it might not be enough to know the codebase, or the codebase might be so big that it is

impossible for a person to analyze it through analytically. Thus one needs tools to help one analyzing

the code, and this article is going to talk about profiling, which usually highlights slow parts of the

code.

There are a number of profilers available: cProfile module which is included in standard library,

profiler included in Python Tools for Microsoft* Visual Studio*, line_profiler package available on

PyPI and so on. The problem with most Python profilers is that they usually have quite a big overhead

(slowing down application being profiled) and most of them don’t provide line-level source infor-

mation.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

27

4. What Intel brings to Python community

Intel has a bunch of well-known libraries used for building high-performance application like

Intel® Math Kernel Library (Intel® MKL), Intel® Threading Building Blocks (Intel® TBB), imple-

mentation of OpenMP* standard, implementation of MPI standard, Intel® Data Analytics Accelera-

tion Library (Intel® DAAL), etc., and profiling tools like Intel® VTune™ Amplifier, but until recent-

ly those were mostly accessible and usable for C/C++/Fortran developers.

Now Intel brings the power of these instruments to the Python developers community by making

freely available Intel® Distribution for Python which utilizes Intel MKL and OpenMP to parallelize

numerical calculations in extensions like NumPy. In addition, Intel introduces Intel TBB bindings for

Python, which could be used to make parallelization of applications easier by dealing with most of the

problems, related to that (load balancing, oversubscription, etc.) [5]. Intel DAAL bindings for Python

is made available to foster big data analysis done in Python, and Intel VTune now supports profiling

mixed Python/C/C++/Fortran applications allowing developers who care about performance to study

their applications and see if there are any addressable bottlenecks.

Speedups of Intel Distribution for Python on selected functions are shown on Fig.3.

Fig. 3. Python* Performance Boost on Selected Numerical Functions with Intel® Distribution for Python (2017

beta) vs. Ubuntu Python*.

Also unlike many Python profilers that use high overhead instrumentation which can distort the

result, Intel VTune Amplifier uses very low overhead sampling technique that gives accurate enough

results and shows line-level information at the same time. It also shows the developer all the code in

the application, be in Python, C, C++ or even Fortran, thus not requiring one to use several profilers

(each for a language) when optimizing an application written in several languages.

5. Applying libraries and tools to real world example

Consider such a popular problem as construction of a recommendation system. Let us assume that

input data for this problem is items purchased and users’ ratings for them. Constructed recommenda-

tion system should be able to solve two independent tasks: 1) build up a recommendation rule; 2) per-

form an actual recommendation for a particular user. For the latter we assume that the system is work-

ing as a web-service, which could have many user requests in a given time interval to build a recom-

mendation for them.

5.1 Building recommendation rule

There are several types of algorithms for creation of a model for recommender system. In this ar-

ticle we focus on item-based recommendations where the model is represented by items similarity ma-

Configuration Info:

- Fedora* built Python*: Python 2.7.10 (default, Sep 8 2015), NumPy 1.9.2, SciPy 0.14.1, multiprocessing

0.70a1 built with gcc 5.1.1;

Hardware: 96 CPUs (HT ON), 4 sockets (12 cores/socket), 1 NUMA node, Intel(R) Xeon(R) E5-4657L

v2@2.40GHz, RAM 64GB

Operating System: Fedora release 23 (Twenty Three)

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

28

trix. Each element of the matrix is the measure of similarity between the items and . In our im-

plementation we chose cosine distance as a measure of such similarity.

The whole algorithm of model creation consists of the following steps:

1) Load users’ ratings from database into the matrix. Rows of the matrix represent different items

while columns represent different users.

2) Compute items similarity as a cosine distance:

a) Normalize the matrix with users’ ratings through dividing each row by its Euclidean length.

b) Compute dot product between the matrix rows.

3) For each item i choose k most similar items with the largest measure of similarity and set the simi-

larities for all other items to zero.

Here is the code of the step 2b implemented in pure python without additional packages:

def compute_similarity_matrix(matrix):

 items_num, users_num = len(matrix), len(matrix[0])

 cosine_sim_matrix = [items_num * [0] for i in range(items_num)]

 for i in range(items_num):

 for j in range(items_num):

 sum = 0

 for k in range(users_num):

 sum += matrix[i][k] * matrix[j][k]

 cosine_sim_matrix[i][j] = sum

 for i in range(items_num):

 cosine_sim_matrix[i][i] = 0

 return cosine_sim_matrix

For performance measurements of this implementation we used data from http://grouplens.org/,

that contains 1,000,000 ratings made by 6,040 users for 3,260 movies. This pure Python implementa-

tion took 338 minutes to load data and build similarity matrix. To understand where the main bottle-

neck come from we used Python profiling feature available in Intel VTune Amplifier XE. To signifi-

cantly decrease the time needed for profiling we reduced the number of ratings from 1,000,000 to

20,000. The results of the profiling could be seen on Fig. 4 and Fig. 5.

Fig. 4 Bottom-up view of Intel® VTune™ Amplifier XE shows the most compute-intensive part - the computa-

tion of items similarity.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

29

http://grouplens.org/
http://grouplens.org/
http://grouplens.org/

Fig. 5 Intel® VTune™ Amplifier XE shows that the program spent the biggest part of execution time at line 86.

From the profiles we concluded that algorithm spends most of the time in dot product. In Python

such operations are not as efficient as in compiled languages like C/C++ or Fortran. This happens be-

cause of the reasons listed in the chapter 2.2.

Fortunately, Python has a number of extensions provided as additional packages that help to miti-

gate if not all but most of the mentioned issues. De facto standard package for linear algebra computa-

tions is called Numpy. It introduces additional data type called ndarray, array of an arbitrary dimen-

sion represented as a contiguous block in memory. Linear algebra operations are implemented in

Numpy via NETLIB, a popular Fortran library.

The Fig. 6 shows the performance improvement after changing our initial similarity matrix com-

putations to the following code:

import numpy as np

matrix = np.array(shape=(len(items), len(users)))

...

cosine_sim_matrix = matrix.dot(matrix.T)

Fig.6 Performance boost of Numpy computations over the pure Python
*
 implementation

Configuration Info: - Fedora* built Python*: Py-

thon 2.7.10 (default, Sep 8 2015), NumPy 1.9.2,

SciPy 0.14.1, multiprocessing 0.70a1 built with gcc

5.1.1; Hardware: 96 CPUs (HT ON), 4 sockets (12

cores/socket), 1 NUMA node, Intel(R) Xeon(R)

E5-4657L v2@2.40GHz, RAM 64GB, Operating

System: Fedora release 23 (Twenty Three)

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

30

Fig. 7 Bottom-up view of the Intel® VTune™ Amplifier XE shows that the application spends 64.4% of the

time in data loading from the database

The profile on Fig. 7 shows that new bottleneck is in the data loading step. This makes further op-

timization of the computational part unreasonable.

5.2. Generation of user recommendations

The second part of the collaborative filtering task is to predict user preferences for not rated items

from the ratings that he or she already provided.

To compute the user preference of the item i we multiply i-th row of item-item similarity matrix

by the vector of user ratings. By doing this for each row of the similarity matrix, except those rows for

which the user has already provided the ratings, we predict user’s preferences for all items. The result-

ing preferences vector is sorted to choose top k elements.

This code shows how to implement this part of the algorithm using Numpy:

x = topk_matrix.dot(user_vector)

quorum = 10

data_ids = np.argsort(x.data[0])[-quorum:][::-1]

For the application that works as a web-service task to compute similarity matrix can be per-

formed infrequently (e.g. once a day) as compared to the number of users’ requests to get the recom-

mendation (e.g. hundreds of thousands of requests per second, which could arrive at server in parallel).

Therefore, the task to generate the recommendation for a particular user could be actually seen as a

subtask of a larger task – fulfil several requests.

The Fig. 8 demonstrates the performance advantage of Python interpreter and Numpy package

taken from Intel Distribution for Python over Python interpreter and Numpy package taken from Fedo-

ra 23 for the task of users’ recommendation generation.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

31

Fig. 8 Performance comparison of generating of user recommenda-

tions between Python
*
 interpreter and Numpy package from Fedora*

23 and Intel® Distribution For Python* with its own Numpy.

The reasons of such an improvement are:

 Python sources compiled by Intel® C/C++ Compiler.

 Calls to Intel Math Kernel Library instead of calls to standard NETLIB for matrix to vector

multiplication.

 Usage of OpenMP library for multithreaded computations (see Fig. 9).

Fig. 9 Shows usage of OpenMP* technology for parallelization of users' preferences computations.

It could be presumed that usage of Intel Distribution for Python is unnecessary because one could

build Numpy package with MKL-enabled calls oneself. However, it is not an easy task [9, 10, 11, 12].

Another possibility to parallelize computations of user preferences is to use Python’s native tools

for that. Let us consider ThreadPool class (part of standard library), which could be used in the follow-

ing way:

def process_in_parallel(n, body):
 from multiprocessing.pool import ThreadPool

 global tp_pool, numthreads
 if 'tp_pool' not in globals():

 print "Creating ThreadPool(%s)" % numthreads

Configuration Info: - Versions: Intel® Distri-

bution for Python 2.7.11 2017, Beta (Mar 04,

2016), Intel® MKL version 11.3.2 for Intel

Distribution for Python 2017, Beta , Fedora*

built Python*: Python 2.7.10 (default, Sep 8

2015), NumPy 1.9.2, SciPy 0.14.1, multipro-

cessing 0.70a1 built with gcc 5.1.1; Hardware:

96 CPUs (HT ON), 4 sockets (12

cores/socket), 1 NUMA node, Intel(R)

Xeon(R) E5-4657L v2@2.40GHz, RAM

64GB, Operating System: Fedora release 23

(Twenty Three)

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

32

 tp_pool = ThreadPool(int(numthreads))
 tp_pool.map(body, xrange(n))

Fig. 10 Usage of ThreadPool class

Where body is the unit of parallelizable work. In our case it is a generation of recommendation

for a number of users, requests from which have arrived t server about the same time.

“Numpy + ThreadPool” bar from the Fig.11 shows that enabling parallelization using code snip-

pet from Fig. 10 gives relatively good performance boost as compared to use of Intel® Distribution for

Python, though requires source code modification to achieve this.

If the same technique is applied to Intel Distribution for Python, which is already parallelized,

then performance suddenly degrades as it is shown on “Intel Distribution for Python + Numpy +

ThreadPool” bar. This happens because the work is parallelized on two independent levels: one level

is ThreadPool and another one is Intel MKL, which is used in each ThreadPool’s body. Both levels

act as if they control all the cores of the machine. In the worst case the number of threads created

could be a square of the number of cores and the application would spend most of its time on context

switching instead of doing useful work. This is known as oversubscription problem.

To overcome the oversubscription issue we use Intel Threading Building Blocks library because it

is known to be good at nested parallelism. Python wrapper of this library replaces standard ThreadPool

package, as well as other thread pool implementations popular libraries Dask and Joblib, effectively

not requiring modification of the source code of an application. Use this command line switch to ena-

ble Python wrapper for Intel TBB library:

$ python -m TBB <your_script>.py

This will also enable Intel TBB threading layer in Intel MKL.

As a result we got even better speedup for the task (see “Intel Distribution for Python + Numpy +

ThreadPool + TBB” bar on Fig.11)

Fig.11 Comparison of various combinations of usages of different Numpy packages with ThreadPool and Intel®

Distribution for Python
*

6. Future improvements

Intel Data Analytics Acceleration Library could be used to scale a solution for the mentioned

problem onto computer clusters and distributed systems. Its Python bindings present another algorithm

Configuration Info: - Versions: Intel® Distribution for Python* 2.7.11 2017, Beta (Mar 04, 2016), MKL ver-

sion 11.3.2 for Intel® Distribution for Python* 2017, Beta, Fedora* built Python*: Python 2.7.10 (default,

Sep 8 2015), NumPy 1.9.2, SciPy 0.14.1, multiprocessing 0.70a1 built with gcc 5.1.1; Hardware: 96 CPUs

(HT ON), 4 sockets (12 cores/socket), 1 NUMA node, Intel(R) Xeon(R) E5-4657L v2@2.40GHz, RAM

64GB, Operating System: Fedora release 23 (Twenty Three)

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

33

for constructing recommendation systems called alternating least squares (ALS), which is known to be

more adjustable and efficient than the algorithm based on items similarities.

7. Conclusion

For a long period scripting languages like Python were considered languages for prototyping due

to their poor performance. However, by using dedicated Python packages that call highly optimized

functions, exploit multithreading and fully utilize modern CPUs performance potential developers

could significantly speedup their algorithms achieving near native executing speed, avoiding the need

to rewrite them in C/C++. Using profiling tools that can quickly pinpoint the bottlenecks in existing

code also helps developers to improve performance of their applications in the most effective way by

investing most developing time in improving performance of parts of code that really matter instead of

trying to fix every single line.

8. Legal disclaimer and optimization notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFOR-

MATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PAR-

TICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPY-

RIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only

on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using

specific computer systems, components, software, operations and functions. Any change to any of

those factors may cause the results to vary. You should consult other information and performance

tests to assist you in fully evaluating your contemplated purchases, including the performance of that

product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core,

VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, function-

ality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Micropro-

cessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please re-

fer to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.

Notice revision #20110804

References

1. Studies on popularity of coding languages by www.codeeval.com. February, 2016. URL:

http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016

2. L.Prechelt, An empirical comparison of seven programming languages // IEEE Computer, 2000,

Vol. 33, Issue 10, pp. 23-29

3. D.Berkholz, Programming languages ranked by expressiveness. March, 2013. RedMonk. URL:

http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/

4. J.Cownie, HPC Trends and What They Mean for Me, Imperial College, Oct. 2015.

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

34

5. A.Malakhov, Unleash parallel performance of Python programs. April, 2016. URL:

https://software.intel.com/en-us/blogs/2016/04/04/unleash-parallel-performance-of-python-

programs

6. Intel® Distribution for Python web site. URL: https://software.intel.com/en-us/python-distribution

7. Mixed Python/C/C++ Performance Analysis Feature – Beta. URL: https://software.intel.com/en-

us/python-profiling

8. R.James, Intel® Data Analytics Acceleration Library. August, 2015. URL:

https://software.intel.com/en-us/blogs/daal

9. Intel® Developer Zone Forum Thread “Numpy+MKL install fails: Could not locate executable

icc”. URL: https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/536412

10. Intel® Developer Zone Forum Thread “Problem building 64 bit numpy using MKL and vc11

(Windows)”. URL: https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/532319

11. Intel® Developer Zone Forum Thread “MKL FATAL ERROR: undefined symbol: i_free”. URL:

https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/300857

12. Intel® Developer Zone Forum Thread “Error running NumPy example: MKL FATAL ERROR:

Cannot load libmkl_avx.so or libmkl_def.so.”. URL: https://software.intel.com/en-us/forums/intel-

math-kernel-library/topic/392223

Суперкомпьютерные дни в России 2016 // Russian Supercomputing Days 2016 // RussianSCDays.org

35

